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Business and Activity Section 

 

(a) Generated Commitments  

No-cost extension due to COVID-19 pandemic 

Some purchase of steel plates and piezoelectric sensors 

 

(b) Status Update of Past Quarter Activities  

The research activities in the annual report 2 included: (i) Task 4: Completed efforts on decoding 

uncertainty due to measurement noise, operational condition (temperature variances), and structural initial 

nonlinearity; aging effects toward data variances are in progress. (ii) Task 5: Completed efforts on decoding 

heterogeneous data sets; (iii) Task 6: Development of learning for human-in-the-loop decision making, 

semi-automated human-machine decision making, and decision-tree based human-machine decision 

making. Survey and method calibration are in progress. 

 

(c) Cost share activity 
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Cost share was from the graduate students’ tuition waiver.  

 

(d) Summary of detailed work for Tasks 4-6 

 

Task 4: Decode Variance from Uncertainties 

This task aimed to address the challenge to decode variance due to various uncertainties associated to 

measurement noise, operational, and nonlinearity due to material discontinuity.  

As for large volumes of ultrasonic data, numerous uncertainties and complex guided wave propagation 

in oil/gas pipeline, as schematically in Fig. 1, feature extraction may cause the limitation. However, deep 

learning methods, such as convolutional neural networks (CNN), was used herein to enhance information 

extraction and better classify structural uncertainty of from data in pipeline associated with a high levels 

of variances, including measurement noise, nonlinearity and other uncertainty. Clearly, oil/gas pipeline 

structures are often exposed to complex environment with high levels of uncertainty, as schematically 

shown in Fig. 1b. As a result, Lamb wave signals collected from complex structural systems in fields could 

be highly affected by structural uncertainty, which in turn affects the effectiveness of the methods for 

engineering applications. We discussed the simulation model of the pipeline and several states were 

designed to detect the damage using CNN algorithm. As stated in last report, the framework of this study 

was shown in Fig. 2. The study was presented herein to address the effectiveness of the proposed deep 

learning methods when handling structural uncertainty due to noise level and material discontinuity from 

weldment that pipe engineers often face with in field. 

 

             
 (a) Pipes used for oil/gas transmission line      (b) Schematics of guided wave along a pipeline 

Fig. 1 Data collected from guided wave along a pipeline 

 

The merits of using the proposed learning framework over conventional physics-based signal process 

were mainly on:  

(a) Handling nonlinear and high-dimensional features; physics-based features such as amplitude, 

phase change, and correlation coefficient, which are often used explicitly for determining damage level 

and size, could be insensitive to defects in some cases when facing with complexity of guided wave 

multimodal interaction, noise or other interference. Differently, deep learning could automatically extract 

sensitive features related to structural and material discontinuity, with less physical representation.  

(b) Tackling more structural complexity with less physical restraints; Guided wave exhibits non-

stationary and nonlinear behavior, experiencing complex dispersion and coherent multi-mode interaction. 

Different to physics-based methods that attempt decomposition of mixed modes for signal process, the 

machine learning could extract sensitive damage features, with less or without such physical restraints. As 

a result, with representative data, the machine learning could provide better damage detection with 

minimized explicit formation that physics-based methods highly rely on.  

(c) Uncovering structural uncertainty; Consider that oil/gas pipelines are often exposed to high levels 

of uncertainty, structural uncertainty is one of challenges for physics-based methods. The cases were 

designed in this study to address this challenge and demonstrate the effectiveness of the proposed learning 

framework under structural uncertainty due to noise level and material discontinuity from weldment. The 

findings were expected to provide new vision using machine learning methods for pipeline engineering 

applications.  

Guide wave 

Damage 

Welded joint 
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Fig. 2 Framework in this study 

 

Oil/gas pipeline was simulated using 3D FE modeling through COMSOL. The prototype of a steel 

pipeline was selected from the literature, where its dimension is 76-mm in outside diameter and 4 mm in 

wall thickness, and with a length of 2000 mm.  

 

(a) Ultrasonic guided waves 

Ultrasonic guided waves generated by piezo actuators can propagate along the pipe and change when 

excited guided wave signals encounter defects or other material discontinuity. Different damage location 

and severity can cause the wave scattering in the form of mode conversion, reflection and transmission 

which makes the ultrasonic guided wave-based damage detection complicated. As a result, acquiring the 

knowledge of guided wave dispersive behavior, mode shapes, and suitable frequency range will make the 

damage detection susceptible to control. According to the Fig. 3, L (0, 2) mode in range 50 to 150kHz has 

lower dispersion, higher speed and lower distorted which is commonly used in testing. As such, L (0,2) 

mode was select to detect damage in this research. 
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Fig. 3 Multiple mode of guided wave 

Deep  

Learning 

Networks 

Data Collection Multiple sensors 
Sensor Fusion 

in Fig. 1b 

Preprocessing Filers/Normalization 

Feature Extraction 

Feature Selection 

Pattern Recognition 

Classification 



4 

 

(b) Impacts of diameter of pipe on signal characteristics 

Diameter of pipeline varies from less than one inches to relatively an important factor for guided wave 

testing. In experiment, when same actuators glued around the pipeline, the big diameter need more energy 

to excite. In addition, the propagation paths of guided waves are changed in big diameter pipes. In this 

section, 4 different diameter pipelines were designed to investigate the guided wave propagated in different 

pipes, including 3 inches, 6 incher, 12 inches and 18 inches, shown in Table 1. The length of the pipes was 

20 times of the 3 inches (1520 mm). The thickness was 4 mm. A though-thickness notch shaped damage 

where located at the middle of the pipe. The width of the notch was 1 mm, and the length of the notch was 

depended on the diameter of the pipe, which was 0.01 time of the diameter. The model was shown in Fig. 

4. Totally, 16 excitation nodes were located at the center of the left boundary. The excitation wave was 100 

kHz 5-cycle sine function operated with a Hanning window. The received signals were normalized and 

illustrated in Fig. 5. Clearly, with the pipe diameter increase, the positions of the reflections were same. 

However, the amplitude of the boundary reflection was reduced, and the damage reflection was different.  

 

Table 1 Test matrix for computation modeling 

Case Label 
Diameter of 

pipeline 

Damage 

type 
location Noise Interference 

Variance due 

to diameter 

State #1 3 inches Notch middle 

Noise levels of from 60 dB to 100 

dB 

State #2 6 inches Notch middle 

State #3 12 inches Notch middle 

State #4 18 inches Notch middle 

 

 
 

 

 

 

 

 
 

 
Fig. 4 Pipe model with different diameters, ranging from 3 in. to 18 in. 

Excitation node Notch-shaped damage 

(a) 

(c) 

Excitation node 

Notch-shaped damage 

(d) 

Notch-shaped damage 

Excitation node 

(b) 

Excitation node 

Notch-shaped damage 
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Fig. 5 Received signals 

 

As such, the results herein confirmed the signal characteristics of pipes under varying diameters exhibited 

identical trend. The proposed learning framework could effectively capture the differences due to changed diameters. 

Therefore, for simplicity, we used 3-in. diameter pipe as our representatives for data fusion (in both numerical and 

experimental studies). Note that we will conduct 6-in. diameter pipes as well in the coming periods to further confirm 

this statement to ensure the effectiveness of the proposed learning for different scenarios.  

 

Sub-Task 4.1. Reducing variance due to measurement noise 

To address the impacts of noise levels to signals, the overall of 15 different states were designed and listed 

in Table 2, including three different scenarios designed with notch-shaped damage (i.e., different damage 

location, size and depth). 

To consider the uncertainty happened in actual situation, noise was added to the collected signals based 

on the signal to noise ratio (SNR) that represents the ratio of the signal strength to the background noise 

strength as: 

𝑆𝑁𝑅𝑑𝐵  =  10 log10(
𝑃signal

𝑃noise
) (1) 

where 𝑃signal and 𝑃noise are the average power of signal and noise by the dB scale, respectively. Five 

different noise levels, ranging from 60 dB to 100 dB, were selected for machine learning to check the 

sensitivity of the uncertainty due to noise. 

 

Table 2 Test matrix for computation modeling  

Case Label Damage location Damage size Damage depth Noise Interference 

Reference State #1 / / / 

Noise levels of 

from 60dB to 

100dB 

Variance due to 

damage location 

State #2 0.5* Dout 0.1* Dout 4 mm 

State #3 1* Dout 0.1* Dout 4 mm 

State #4 2* Dout 0.1* Dout 4 mm 

State #5 5* Dout 0.1* Dout 4 mm 

State #6 10* Dout 0.1* Dout 4 mm 

Variance due to 

damage size   

State #5 5* Dout 0.1* Dout 4 mm 

State #7 5* Dout 0.2* Dout 4 mm 

State #8 5* Dout 0.3* Dout 4 mm 
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State #9 5* Dout 0.4* Dout 4 mm 

State #10 5* Dout 0.5* Dout 4 mm 

State #11 5* Dout 0.6* Dout 4 mm 

State #12 5* Dout 0.7* Dout 4 mm 

Variance due to 

damage depth 

State #13 5* Dout 0.1* Dout 1 mm 

State #14 5* Dout 0.1* Dout 2 mm 

State #15 5* Dout 0.1* Dout 3 mm 

State #5 5* Dout 0.1* Dout 4 mm 

 

Validating the classification model by testing data, the results were illustrated in Fig. 6. 600 signals 

were input into the pretrained model, and the prediction result of each data was directly obtained. Obviously, 

the CNN method trained by a part of the signals could accurately identify the damage location in most 

situations, which acquired 100% classification under noise level of 100 dB to 70dB. Fig. 6(a) showed 

confusion matrix of the testing result in 70 dB. However, the special case was happened at 60 dB, which 

the accuracy of the test was decreased dramatically to 82.83%. The data in each category was misled into 

other categories to some extent. Specifically, 11 of the signals whose damage was located at 0.5 Dout from 

the weldment were misclassified as group 1 D, and 6 of them was misled into 5 Dout. The accuracy of the 

fourth class was only 76%, which means the prediction of 24 test signals in this class were failed. The 

reason of the low accuracy was that the high level of noise added to the signals replaced the most of original 

features with the noise features. Therefore, the classification method was ineffective when the training data 

was Indistinguishable. 

  

 

 

(a) SNR = 70 dB (b) SNR = 60 dB 

Fig. 6 Testing results 

 

The testing results of the damage depth were shown in Fig. 7, when the SNRs were 70 dB and 60 dB. 

As noise level was 70 dB, 2 out of the 400 testing points were incorrect which made the accuracy rate equal 

to 99.5%. Similar with the situation in damage location and damage size, when the SNR reached to 60 dB 

the testing accuracy was dropped down dramatically, only 76.25%. The errors were mainly occurred at the 

damages belonging to 3-mm depth and 4-mm depth state whose accuracy were 67% and 58% respectively. 
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(a) SNR = 70 dB (b) SNR = 60 dB 

Fig.7 Testing results of damage depth 

 

Sub-Task 4.2. Reducing variance due to data under changed operational environments 

In this study, the temperature change was treated as one of operational variance and elucidate its impacts 

on the data classification. As listed in Table 3, scenarios were designed to account for variance in terms of 

temperature change, ranging from -20 oC to 100 oC, which pipeline measurement could experience under 

operational conditions. The weld with and without defect was considered as the case for determining of 

data classification, where Defect 1 denotes lack of fusion. Note that uniformly distributed temperature was 

ideally assumed through the entire pipe in this study. However, an entire pipe often experiences a high 

level of temperature deviation, particularly at the locations of weldment and damage areas, which will be 

investigated in the future study.  

 

Table 3 Test matrix for computation modeling  

Case Label 
Welding defect 

type 

Severity of Welding 

defect 
Temperature Noise Interference 

Reference State #1 / / 20oC 

Noise levels of from 

60dB to 100dB 
Variance 

due to 

temperature 

State #2 Defect 1 1% -20oC 

State #3 Defect 1 1% 0oC 

State #4 Defect 1 1% 20oC 

State #5 Defect 1 1% 50oC 

State #6 Defect 1 1% 100oC 

 

Figs. 8(a)-8(b) were plotted for the confusion matrix of classification with temperature changes under 

different noise levels. Under high temperature, the prediction was 100%. The accuracy reduced to 69.6% 

when SNR was 80 dB, as shown in Fig. 8(a). The prediction among -20oC, 0oC and 20oC was terrible, as 

49%, 54% and 45%, respectively. On the contrary, the result in high temperature was 100%. When the 

noise level was about 70 dB, the accuracy of prediction dropped to 60%, and similar to the case under 

SNR=80 dB, large portions among -20oC, 0oC and 20oC had a high misleading, as shown in Fig. 8(b).   
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(a) SNR = 80 dB (b) SNR = 70 dB 

Fig. 8 Confusion matrix under different noise levels 

 

Sub-Task 4.3. Reducing variance due to structural initial nonlinearity 

Pipeline systems exhibit highly initial nonlinearity due to aging and material degradation. Initial 

nonlinearity has to be used in feature pools as baseline. In this study, we focused on investigation of 

variances due to weldment that is one of structural initial nonlinearity and addressed their impacts on 

classification.  

Material discontinuity due to weldment creates more complexity for lamb wave signal process. This 

section was to discuss the effectiveness of the proposed method for classifying such structural uncertainty. 

To test the accuracy of this model, a new dataset was built by numerical simulation method. The identical 

plate, illustrated in Fig. 4, was modified by adding a butt weldment at location of point B and a 6mm-long 

notch at location of point C, shown in Fig. 9(a). The width of the weldment was 5 mm and the welding 

filler was Ti-6Al-4V. To enlarge the data, 175 signals were augmented using white Gaussian noise with 

different levels.  

With the interaction of the weldment, the received signal had more reflected packages than that of the 

previous one, shown in Fig. 9(b). From the signal, the reflections came from the weldment, damage and 

the boundary. The label of each data was predicted by SVM which was trained in section 5. Table 4 showed 

the comparation of the predicted result in 6 mm-long damage and the one added the weldment. Clearly, the 

prediction of the damage with the weldment post challenge in classification as compared to cases without 

weldment. Specifically, in most of the case (shown in Fig. 10), 6-mm long damage was classified 

accurately which was 100% expect the SNR equal to 80 dB. With the weldment appeared, it was interfered 

the signal and reduced the accuracy of the prediction. However, most of the damage could be test by this 

model. A total of 80% of damaged cases were classified into 6 mm-long damage group, and 20% of the 

damage was predicted as 4 mm-long at 100 dB. The misleading was increased to 26.9% when noise level 

approached 90 dB. 

 

 

 

 

 

 

(a) Plate with a butt welded joint at point B and a 6-mm long notch-type damage at point C. 

14 mm 
E D C B A 

200 mm 200 mm 200 mm 200 mm 57 mm 
914 mm 

Weldment Notch-type damage 
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(b) Signal collected from point A 

Fig. 9 Plate with weldment and 6 mm-long notch-type damage 

 

Table 4 Prediction 

Noise level 120 dB 110 dB 100 dB 90 dB 80 dB 

Without 

weldment 
100.00% 100.00% 100.00% 100.00% 56.4% 

With weldment 100.00% 100.00% 80.00% 73.10% 65.71% 

 

  
(a) SNR = 100 dB, accuracy = 80.0% (b)  SNR = 90 dB, accuracy = 73.1% 

Fig. 10 Classification of damage sizes under two noise levels 

 

 

Task 5: Decode Variance from Heterogeneous Data Sets 

This task aimed to address the challenge due to various heterogeneous data sets and unveil the fundamental 

nature of data types.  

 

Sub-Task 5.1. Mixed fusion method for heterogeneous data sets 

First attempt was to category the multiple type and understand how to mitigate the influence of different 

contamination. To accomplish this task, we used a mixed data fusion strategy to clear and assemble data. 

This mixed data fusion process including sensor level fusion and central-level fusion. The final result of 

this data fusion process is united to three different formats based on the original signal’s format and the 

application purpose.   

 

Sub-Task 5.2. Data classification between image and sensory data 

The second attempt was made using common images and sensory data. The results of the damage detection 

were 4 different signals from receivers located circumferentially around the pipe. Considering the 

interrelationship between signals from different locations, four signals were combined as a matrix input 

into the deep learning.  

Damage 

reflection 

Weldment 

reflection 

Boundary 

reflection 
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Fig. 7 represented the confusion matrix of the testing data in SNR equal to 70 dB and 60 dB 

respectively. When the noise level is lower than 70 dB, the accuracy of the prediction for the testing data 

was 100%. However, in 60 dB condition, the accuracy of the identification was 89.5%.  

 

 

 

(a) SNR = 70 dB (b) SNR = 60 dB 

Fig. 7 Confusion matrix for time-series data classifcation 

 

 

Task 6: Explore Variance from Human-Machine Interfaces 

This task aimed to explore variance due to human-machine interfaces and mixed human-machine 

data/information 

 

Sub-Task 6.1. Physics based human interpretation of data vs. Semi-automated vs. Automated machine 

interpretation of data to eliminate dependency to operators  

6.1.1 Physics based human interpretation of data 

Take mechanical damage description if measurement is based on guided wave for an example, the physics-

based methods are based on physical characteristics of guided waves along pipeline systems. The captured 

sensor data are usually integrated in the analytical models or simulations for calibration or interpretation 

based on expert experience to identify physical characteristics and assess the conditions of a pipe. 

Analytical models and simulation techniques are now well-established, which are still the major base for 

experts in the pipeline community.  

Lamb wave exhibit apparently non-stationary and nonlinear behavior. Mechanical damage description 

could be interpreted under frequency-, time-, or time-frequency-domains. In time domain, physics-based 

features play an important role in Lamb wave feature extraction. Amplitude, energy, and correlation 

coefficient are three features which can represent the wave characteristic. The amplitude was obtained by 

the peak value of the damage wave packet. The energy calculated by the root mean square of wave (RMS) 

in the damage part were defined as  

       RMS = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1                       (2) 

where n is the number of data point and ei is the signal. The correlation coefficient under the damage state 

was used to compare with that of the health state. In frequency domain, the amplitude was extracted as the 

features.  

 

6.1.2 Physics-guided semi-automated interpretation of data 

The physics-guided semi-automated interpretation of data are often based on critical physical 

characteristics of guided waves under different domains. As shown in Fig. 8(a), the shallow learning is 

often employed for such a purpose. From the point of view of learning architecture, the shallow learning, 

such as the SVM or conventional artificial neural network, uses one or zero hidden layer for a shallow 
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linear pattern separation. The shallow learning highly relies on the quality of the hand-crafted features 

(physics-guided features), suitable for well-constrained cases (such as physical features, such as amplitude, 

frequency or RMS) 

Take SVM as example for demonstration of the semi-automated interpretation. Consider the set of 

training vectors(𝐱1, 𝑦1),… (𝐱𝑘 , 𝑦𝑘), ∈ 𝐑𝑁 belonging to two classes (𝑦𝑖 = {−1, 1}). The aim is to look for 

the hyperplane to separate the data:  

 (𝐰 ∙ 𝐱) + 𝑏 = 0, 𝐰 ∈ 𝐑𝑁 , 𝑏 ∈ 𝐑   (3) 

where 𝐰 is the weight parameter controlling the orientation of the hyperplane; b is a scalar threshold 

adjusting the bias of margins between the optimal hyperplane and the support vectors. Then the feature 

space for the linear classifier is shown 

 𝑓(𝐗) = sgn((𝐰 ∙ 𝐱) + 𝑏) (4) 

For the simplest case of a two-dimensional space, several linear classifiers could separate the data. The 

goal is to look for the hyperplane with largest margin, which is called the optimal hyperplane. Thus, all the 

training data are satisfying the constraints as follows 

 𝐱𝑖 ∙ 𝐰 + 𝑏 ≥ +1  for 𝑦𝑖 = +1  (5) 

 𝐱𝑖 ∙ 𝐰 + 𝑏 ≤ −1  for 𝑦𝑖 = −1 (6) 

The geometric distance from data point to hyperplane (w, b) is shown 

 𝑑((𝐰, 𝑏), 𝐱𝑖) =
𝑦𝑖(𝐱𝑖∙𝐰+𝑏)

‖𝐰‖
≥

1

‖𝐰‖
  (7) 

To obtain the optimal hyperplane, the maximum distance to the closest data points should be find. From 

Eqn. (13), acquiring the maximum distance is same as finding the minimum value of ‖𝐰‖. Therefore, the 

optimization could also change into a convex quadratic programming problem [41] 

 Minimize 𝜱(𝒘) =
1

2
‖𝒘‖2  (8) 

Lagrange multiplier is the main method to finding the local maxima and minima of a function subject 

to equality constraints. The problem is transformed into [41]  

 𝐿(𝐰, 𝑏, Λ) =
1

2
‖𝒘‖2 −  ∑ 𝜆𝑖[𝑦𝑖(𝐰T𝐱𝑖 + 𝑏) − 1]𝑘

𝑖=1   (9) 

where 𝛬 = (𝜆1 ⋯ 𝜆𝑘)T are the Lagrange multiplier. The 𝐿(𝐰, 𝑏, Λ) has to be minimized with respect to w 

and b, and maximized with respect to Λ ≥ 0. 

The decision function is given by 

𝑓(𝐗) = sgn(∑ 𝜆𝑖
∗𝑦𝑖𝐾(𝑥, 𝑥𝑖)

𝑘
𝑖=1 + 𝑏)                    (10) 

where the 𝐾(𝑥, 𝑥i) is the kernel function, and three commonly used types are gaussian radial basis function 

(RBF), polynomial function and sigmoid function. In this paper, RBF was selected as the kernel function. 

𝐾(𝑥, 𝑥i) = exp(−γ‖𝑥𝑖 − 𝑥𝑖‖2),    𝛾 > 0                  (11) 

In general, the kernel function, shown in Eqns. (11), tend to construct a higher dimensional feature 

space and allows a projectile of data to this hyperplane to achieve being linearly separable. The kernel 

function helps SVM much more suitable for different dataset which can be used in non-linear classification. 

The different kernel functions have their applicability, including computation cost and parameter tuning. 

To enhance the accuracy of the damage prediction, it is important to select suitable penalty coefficient and 

kernel function parameter for the SVMs.  

 

 

Fig. 8 Schematics of (a) Semi-automated interpration of data using shallow learning (i.e., 

SVM); and (b) Full automated machine interpration of data using deep learning 

 

a)        

b)          
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6.1.3 Automated machine interpretation of data to eliminate dependency to operators 

As shown in Fig. 8(b), automated machine interpretation of data is often achieved using deep learning 

that stems originally from artificial neural networks with one shallow hidden layer architecture. The deep 

learnings are constructed by stacking multiple layers in hierarchical architectures, as illustrated in Fig. 8(b). 

The deep architectures exhibit their merits over their counterparts (e.g., shallow learning), as they attempt 

to find statistical representation based on end-to-end decoding without applying any preprocessing 

(predetermined features) as well as no applying any post-processing (feature extraction and/or feature 

selection).  

 

6.1.4 Comparative study of physics-based, semi-automated, and full automated interpretation of 

data 

A prototype of a thin narrow-strip plate was selected from the literature work. The plate had a dimension 

of 914 mm by 14 mm with a thickness of 1.6 mm. The piezo actuator was installed in front of the beam, as 

shown Fig. 9. Five different spots, A to E, were selected to receive the signal, as shown in Fig. 9. The 

damage was located at the point C (457mm away from left side) of the plate. An 8-mm through-the-

thickness notch was defined in the COMSOL to simulate the shape of the damage. 

 

 

 

 

 

Fig. 9 The thin plate with mechanical damage 

Although the physics-based features can classify the damage into different state at a low noisy 

environment (SNR=100 dB), it is hard to get a high accuracy result under higher noise level. Table 5 shows 

the result of the classification with different method and features. Three physics-based features were used 

for classification by the traditional way respectively. Then, SVM was involved by three feature groups, 

including physics-based features (Amp, Frq, Cor and RMS), all feature pools (4 of the physics-based 

features and 12 of the wavelet coefficients) and the selected features by feature selection methods.  

By traditional method, Amp, Frq and RMS presented the good result at 120 dB and 110 dB. However, 

with the level of SNR increased, the accuracy of the separation was dropped down sharply. Specifically, 

only 39.43% of the data can be classified correctly through RMS which was the highest one comparing 

with the Amp (19.43%) and Frq (34.86%). On the other hand, SVM method showed the superiority by the 

high dimensional features which was much more accurate especially at high noise level states. In this 

method, the results were distinct by different feature groups. Using physics-based features to train the data, 

although the accuracy was reached to 100% (SNR = 120 dB), the ratio began to reduce into 98.86% at 110 

dB and then decreased to 53.17% at 80 dB. To increase the dimension of the features, all the features were 

used for training data. The accuracy of each state was not increased dramatically, which was lower than 

the model trained by selected features. Clearly, using selected features, 95.43% of the data was identified 

at 100 dB comparing with the 84% by all the features. In the case of SNR equal to 80 dB, nearly 17% of 

the accuracy was increased by feature selection. Therefore, physics-guided semi-automated interpretation 

of data using SVM combining with the feature selection method can increase the accuracy of the 

classification, as compared to traditional physics-based models. In addition, with the increase of uncertainty, 

such as measure noise reaching up to 90 or 80 dB, the semi-automated methods could suffer from 

significant reduction in accuracy. The relatively low accuracy (such as 56%) could provide high risk in 

false alarm and lead to wrong decision making.    

 

Table 5 Accuracy of different features 

Method Classification by physics-based Physics-guided semi-automated using SVM 

Features Amp Frq RMS No feature selection Feature selection 

Excitation location (actuator) Receivers 

14 mm 
E D C B A 

200 mm 200 mm 200 mm 200 mm 57 mm 
914 mm 
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Physics based 

Features 
All Features 

Selected features 

(wavelet coefficients) 

Noise 

level 

120dB 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

110dB 97.71% 100.00% 98.86% 98.86% 98.86% 100.00% 

100dB 81.14% 86.29% 84.00% 92.00% 84.00% 95.43% 

90dB 44.00% 64.00% 72.00% 80.00% 72.00% 86.29% 

80dB 19.43% 34.86% 39.43% 53.71% 39.43% 56.00% 

 

Further study also confirmed that full automation using deep learning could dramatically improve the 

accuracy of classification as compared to semi-automated methods.   

 

Sub-Task 6.2. Decision-tree based human-machine decision making 

Subtask 6.1 provided a comparative study of human machine interaction, ranging from physics-based 

methods to full automated methods. Clearly, the full automated methods are excellent tools for sensory 

data, in order to avoid any subjective interferences from human factor (such as variances due to different 

experience of inspectors). However, end-to-end full automation is a black box that could lead to false alarm 

in some case, where there are errors generated from data acquisition. Instead, expert experience and 

traceable and explainable data fusion could be a great complementary for informed decision making. In 

this case, ensemble of Resnet with decision tree could combine the coupled effects of human factors and 

machine-based automaton.  

Decision tree is a highly interpretable machine learning method that splits the data according to the 

learned features and cutoff values. The relationship between the prediction 𝑦 and the features 𝑥 is: 

𝑦 = ∑ 𝑐𝑚𝐼{𝑥 ∈ 𝑅𝑚}𝑀
𝑚=1                                                                   (12) 

where 𝑀 is the number of subset, 𝑅𝑚 is subset, 𝐼 is the identical function that if 𝑥 ∈ 𝑅𝑚 returns 1. 𝑐𝑚 is 

the average of all training instances in subset 𝑅𝑚. 

Take mechanical damage description for an example as plotted in Fig. 10, where the six-group data 

were virtually collected from the laboratory under scale factor from 1-5. Clearly, the data were associated 

with human factor, including personal training and field experience with respect to the topics. Note that 

due to different experience, such data may not reflect an identical trend as experienced pipe inspectors in 

pipe community who have worked in this field for years.  

Fig. 55 showed the predicted results in terms of mechanical damage description from different weights. 

Data confirmed that the highest risk associated with human inputs, which could track back what are the 

major contributions from majority.  

Real-world data will be collected in the coming periods and it will provide better representative for 

variances from different perspectives.  

 
Fig. 10 Decision-tree based decision making for correlation among mechanical damage and risk 

 

Sub-Task 6.3. Bayesian belief network-based human-machine decision making 

6.3.1 Deep Bayesian Belief Network (DBBN) 
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Learning architecture of stochastic binary variables between layers v and h through the energy-based 

method using Boltzmann machine (Hinton et al. 2006; Hinton et al. 2012): 

𝐸(𝒗, 𝒉) = − ∑ 𝑎𝑖𝑣𝑖 − ∑ 𝑏𝑗ℎ𝑗 − ∑ ℎ′
𝑗𝑊𝑣𝑖 − ∑ 𝑣′

𝑖𝑈𝑣𝑖 − ∑ ℎ′
𝑗𝑉ℎ𝑗                   (13) 

where, a and b is the biases of the stochastic variables v and h, respectively; W, U, V are the weights of 

each connection; and the joint states of v’ and v (or h’ and h) denote the adjacent connection of the variables 

within a layer. As illustrated in Fig. 11, the deep Bayesian belief network (Zhao et al., 2015; Chaturvedi et 

al., 2016) is the multiple layers neural networks. The model is effective to perform top-down and also the 

opposite bottom-up generative weights, which allows using back-propagation for fine-tuning for optimized 

discrimination/regression.  

 

 

Fig. 11 Architecture of the DBBN 

The DBBN are constructed using multiple restricted Boltzmann machines (RBMs) (Hinton et al. 2006; 

Hinton et al. 2012; Zhao et al., 2015). As schematically illustrated in Fig. 8, the architecture of the DBBN 

consists of undirected multiple levels of the RBMs, where the hierarchical architecture could allow 

automation of feature extraction from lower to upper layers, and the final layer could be constructed using 

different activation function for either classification or logistic regression of interest.  

 

6.3.2 Concept of the RBM and its architectures 

To avoid the complexity and difficulty in determining parameters in Boltzmann machine, as shown in 

Eqn. (5b), the RBM is developed by an undirected graphical machine without visible-visible or hidden-

hidden connections (Mohamed et al. 2012). Take one unit of the RBM (e.g., RBM1 in Fig. 11) as an 

example, the visible variable vi, and the hidden variable, hj, are connected and assigned by a weight, wij. 

The probability to the joint states of the visible and hidden vector is defined by the energy-based function 

(Hinton et al. 2006; Hinton et al. 2012) 

𝑝(𝒗, 𝒉) =
𝑒−𝐸(𝒗,𝒉)

∑ ∑ 𝑒−𝐸(𝒗,𝒉)𝐻
𝑗=1

𝑉
𝑖=1

                                                    (14) 

where, ∑ is the summation over all visible and hidden variables and the 𝐸() is the energy-based function. 

Consider structural data of interest could be binary data, such as black or white color in image recognition, 

or be more complex sensory information, three different data types (either in visible or hidden layer) are 

defined herein by (Hinton et al. 2010): 

We will conduct a survey of pipeline owners, inspectors and other stakeholders in the coming periods 

to collect the critical information of human factors. These data will be used for calibration of the models 

and demonstration of the variances of human factors in decision making.   

 

6.4. Summary of the research activities in the 2nd annual report 

The major research activities are: (i) Task 4: Completed efforts on decoding uncertainty due to 

measurement noise, operational condition (temperature variances), and structural initial nonlinearity 

(integrated effects of weldments with allowable varying imperfection); aging effects toward data variances 

are in progress. (ii) Task 5: Completed efforts on decoding heterogeneous data sets using images and time-
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series sensory data; (iii) Task 6: Development of learning for human-in-the-loop decision making, semi-

automated human-machine decision making, and decision-tree based human-machine decision making. 

Survey and method calibration are in progress. 

 

(e) Description of any Problems/Challenges  

No problems are experienced during this report period 

 

(f) Planned Activities for the Next Quarter  

The planned activities for the next quarter are listed below: 

o Variances due to aging effect of materials in Task 4 will be conducted in both numerical and 

experimental investigations.  

o Variances due to pipe with and without coating in Task 4 will be conducted in both numerical and 

experimental investigations.  

o A survey of pipeline owners, inspectors and other stakeholders will be conducted over the coming 

two quarter periods to collect the human factor associated critical information.  

o Method calibration of decision-tree based human-machine decision making in Task 6 will be 

conducted.  

 


